Nonparametric estimation of genewise variance for microarray data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Estimation of Genewise Variance for Microarray Data.

Estimation of genewise variance arises from two important applications in microarray data analysis: selecting significantly differentially expressed genes and validation tests for normalization of microarray data. We approach the problem by introducing a two-way nonparametric model, which is an extension of the famous Neyman-Scott model and is applicable beyond microarray data. The problem itse...

متن کامل

Nonparametric Estimation of Genewise Variance for Microarray Data1 By

Estimation of genewise variance arises from two important applications in microarray data analysis: selecting significantly differentially expressed genes and validation tests for normalization of microarray data. We approach the problem by introducing a two-way nonparametric model, which is an extension of the famous Neyman–Scott model and is applicable beyond microarray data. The problem itse...

متن کامل

Nonparametric variance function estimation with missing data

In this paper a fixed design regression model where the errors follow a strictly stationary process is considered. In this model the conditional mean function and the conditional variance function are unknown curves. Correlated errors when observations are missing in the response variable are assumed. Four nonparametric estimators of the conditional variance function based on local polynomial f...

متن کامل

Nonparametric variance estimation in the analysis of microarray data: a measurement error approach.

This article investigates the effects of measurement error on the estimation of nonparametric variance functions. We show that either ignoring measurement error or direct application of the simulation extrapolation, SIMEX, method leads to inconsistent estimators. Nevertheless, the direct SIMEX method can reduce bias relative to a naive estimator. We further propose a permutation SIMEX method wh...

متن کامل

Nonparametric Estimation of Variance Function for Functional Data

This article investigates nonparametric estimation of variance functions for functional data when the mean function is unknown. We obtain asymptotic results for the kernel estimator based on squared residuals. Similar to the finite dimensional case, our asymptotic result shows the smoothness of the unknown mean function has an effect on the rate of convergence. Our simulaton studies demonstrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2010

ISSN: 0090-5364

DOI: 10.1214/10-aos802